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Necessary and sufficient conditions are obtained for a continuous function
guaranteeing the uniform convergence on the whole interval [&1, 1] of its
Lagrange interpolant based on the Jacobi nodes. The conditions are in terms of
4-variation, 8-variation, the modulus of variation, and the Banach indicatrix of a
function. � 1996 Academic Press, Inc.

INTRODUCTION

1. Throughout this paper we use the following notations: N and Z+ are
the sets of positive and nonnegative integers, respectively. M is the space of
bounded functions on [&1, 1] and C is the space of continuous functions
on [&1, 1] with uniform norm & }&C . By |($, f ) we denote the modulus
of continuity of f # C on [&1, 1], i.e.,

|($, f )=max[ | f (x+h)& f (x)| : x, x+h # [&1, 1], |h|�$]. (1)

The function \ is called a Jacobi weight if \(x)=(1&x): (1+x);,
:>&1, and ;>&1. If \ is a Jacobi weight, then by _(\)=(P(:, ;)

n (x))�
n=0

we denote the corresponding system of orthogonal polynomials P (:, ;)
n (x)=

#n(:, ;) xn+lower degree terms, #n(:, ;)>0, i.e.,

|
1

&1
P (:, ;)

n (x) P (:, ;)
m (x) \(x) dx=$nm , n{m.

We assume that they are normalized by the condition P (:, ;)
n (1)=( n+:

n ),
n # N. The system _(\) is defined uniquely and is called the Jacobi system
of polynomials.
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By x(k, n)=xk, n=x (:, ;)
k, n , k=1, ..., n, we denote the zeros of a polynomial

Pn(x)=P (:, ;)
n (x) arranged in decreasing order. It is known [19, Thm. 3.3.1,

p. 44] that all zeros of Pn(x) are real and distinct and belong to (&1, 1).
For a given Jacobi weight \ and a given function f # M, the corresponding

Lagrange interpolating polynomial is denoted by L (:, ;)
n ( f ). Hence,

L (:, ;)
n (x (:, ;)

k, n , f )= f (x (:, ;)
k, n )

for k=1, 2, ..., n, and we can write

Ln(x, f )=L (:, ;)
n (x, f )= :

n

k=1

f (x (:, ;)
k, n ) l (:, ;)

k, n (x), (2)

where the fundamental polynomials l (:, ;)
k, n are defined by

lk, n(x)=l (:, ;)
k, n (x)=P (:, ;)

n (x)�(Pn$
(:, ;)(x (:, ;)

k, n )(x&x (:, ;)
k, n )).

By U=U (:, ;) we denote the class of functions, defined on the interval
[&1, 1], for which the sequence of Lagrange interpolating polynomials for
indices : and ; is uniformly convergent on the whole segment [&1, 1], i.e.,

lim
n � �

&L (:, ;)
n ( } , f )& f&C=0.

By K we denote positive constants, possibly depending on indices : and
;, and in general distinct in different formulas. For positive quantities An

and Bn , probably depending on some other variables as well, we write
An=o(Bn) and An=O(Bn), if limn � � An �Bn=0 and supn # N An�Bn<�,
respectively. For quantities A and B, depending on some variables, we
write AtB if the ratio A�B is between two positive constants, independent
of the variables.

The following notions are some generalizations of the notion of bounded
variation of a function.

Definition 1 [4]. Let f # C. Then the Banach indicatrix N( y, f ) of f is
defined as follows: for every y # (&�, �), N( y, f ) is equal to the number
(finite or infinite) of solutions of equations f (x)= y.

Banach [4, Thm. 2, p. 228] proved that a continuous function f has
a bounded variation if and only if N( y, f ) is integrable on (m( f ),
M( f )), where m( f )=min[ f (x) : x # [&1, 1]] and M( f )=max[ f (x) : x #
[&1, 1]].
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Definition 2 [27]. Let 8 be a strictly increasing continuous function
on [0, �) and 8(0)=0. A function f is said to have 8-bounded variation
on [&1, 1], i.e., f # V8 , if

v8( f )=sup
6

:
n

k=1

8( | f (xk)& f (xk&1)| )<�,

where 6=[&1�x0<x1< } } } <xn�1] is an arbitrary partition of [&1, 1].

If 8(x)=x, then V8 coincides with the Jordan class V of functions of
bounded variation and when 8(x)=x p, p>1, it coincides with the Wiener
[26] class Vp .

Definition 3 [6]. Let f # M. The modulus of variation of the function
f is called the function v(n, f ) defined for n # Z+ as follows: v(0, f )=0,
while for n�1

v(n, f )=sup
6n

:
n&1

k=0

| f (x2k+1)& f (x2k)|,

where 6n is an arbitrary system of n disjoint subintervals (x2k , x2k+1),
k=0, 1, ..., n&1, of the interval [&1, 1].

If v(n), n # N, is a nondecreasing upwards convex function and v(0)=0,
then we call v(n) the modulus of variation.

The class of functions which satisfy the relation v(n, f )=O(v(n)) will be
denoted by V[v].

In particular, V[1]=V.

Definition 4 [24]. Let 4=(*k)�
k=1 be a nondecreasing sequence of

positive numbers such that ��
k=1 1�*k=�. A function f is said to have

4-bounded variation on [&1, 1], i.e., f # 4BV, if

v4( f )=sup
6

:
n

k=1

| f (x2k+1)& f (x2k)|
*k

<�,

where 6 is an arbitrary system of disjoint intervals (x2k , x2k+1)/[&1, 1].

If *k=1, k # N, then obviously 4BV=V.

2. It is well known (cf. [21, Section 8.1.2, p. 469]) that continuity of
a function on [&1, 1] alone is not sufficient to imply the uniform
convergence of its Lagrange interpolant based on the Jacobi nodes (or at
any other nodes either).
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In the present paper we examine those conditions on the variation of a
continuous function which guarantee its Lagrange interpolant's uniform
convergence, and whether these conditions are definitive.

Here we represent a brief review of the question. As a corollary from his
more general theorem, Berman [5, Thm. 4, p. 12] obtained the following
result: Let &1<:<0 and &1<;<0. Then Lagrange interpolant (2)
tends to f (x) for every x # (&1, 1) whenever f # C & V. For the special case
:=;=&1�2 this result belongs to Krylov [10, Thm. 2, p. 364]. Later,
Geronimus [7, Thm. 10, p. 557] in particular proved that the above
mentioned result of Berman is valid for :>&1 and ;>&1, and for every
x # (&1, 1).

Kel'zon [8] showed that the pointwise convergence of Lagrange inter-
polant (2) to the function f being interpolated is guaranteed for f # Vp ,
p�1, if &1<:<1�p&1�2 and &1<;<1�p&1�2. Nevai [13, Thm. 7,
p. 126] studied conditions of Lagrange interpolation uniform convergence
on [a, b]/(&1, 1) for a function f # C & V8 for arbitrary :>&1 and
;>&1. Pilipchuk [15, Thm. 1, p. 40] continued this investigation of the
problem. He obtained a condition in terms of the modulus of variation
of a function f # C guaranteeing its Lagrange interpolant's uniform
convergence strictly inside [&1, 1].

Regarding uniform convergence conditions on the whole interval [&1, 1],
the first result was obtained by Ve� rtesi [22, Thm. 3.1, p. 24]: If &1<
:<1�2 and &1<;<1�2, then the following inclusion holds:

C & V/U. (3)

He also showed [23, Thm. 3.2, p. 421] that if max(:, ;)=1�2, then conclusion
(3) does not hold.

Kel'zon [9, Thm. p. 21] generalized the result mentioned above for Vp

classes of functions: If &1<:<1�p&1�2 and &1<;<1�p&1�2, then the
following inclusion holds:

C & Vp /U. (4)

X. Sun estimated the convergence rate of the Lagrange interpolant of
f # C & 4tBV for 4t=(kt)�

k=1. From this result we get the following
corollary [20, Sect. 5.2 and 5.3, p. 83]: Let &1<:<1�2 and &1<;<1�2.
In addition, suppose 4t=(kt)�

k=1 , where t # [0, 1]. Then the inclusion

C & 4t BV/U

holds if t<1�2&q when q>&1�2, and if t=1 when q=&1�2, where q is
defined by (5). X. Sun also mentioned that his result includes the result of
Kel'zon (4).
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In the present paper we examine those conditions on the variation of a
continuous function which guarantee its Lagrange interpolant's uniform
convergence, and whether these conditions are definitive.

Here we represent a brief review of the question. As a corollary from his
more general theorem, Berman [5, Thm. 4, p. 12] obtained the following
result: Let &1<:<0 and &1<;<0. Then Lagrange interpolant (2)
tends to f (x) for every x # (&1, 1) whenever f # C & V. For the special case
:=;=&1�2 this result belongs to Krylov [10, Thm. 2, p. 364]. Later,
Geronimus [7, Thm. 10, p. 557] in particular proved that the above
mentioned result of Berman is valid for :>&1 and ;>&1, and for every
x # (&1, 1).

Kel'zon [8] showed that the pointwise convergence of Lagrange inter-
polant (2) to the function f being interpolated is guaranteed for f # Vp ,
p�1, if &1<:<1�p&1�2 and &1<;<1�p&1�2. Nevai [13, Thm. 7,
p. 126] studied conditions of Lagrange interpolation uniform convergence
on [a, b]/(&1, 1) for a function f # C & V8 for arbitrary :>&1 and
;>&1. Pilipchuk [15, Thm. 1, p. 40] continued this investigation of the
problem. He obtained a condition in terms of the modulus of variation
of a function f # C guaranteeing its Lagrange interpolant's uniform
convergence strictly inside [&1, 1].

Regarding uniform convergence conditions on the whole interval [&1, 1],
the first result was obtained by Ve� rtesi [22, Thm. 3.1, p. 24]: If &1<
:<1�2 and &1<;<1�2, then the following inclusion holds:

C & V/U. (3)

He also showed [23, Thm. 3.2, p. 421] that if max(:, ;)=1�2, then conclusion
(3) does not hold.

Kel'zon [9, Thm. p. 21] generalized the result mentioned above for Vp

classes of functions: If &1<:<1�p&1�2 and &1<;<1�p&1�2, then the
following inclusion holds:

C & Vp /U. (4)

X. Sun estimated the convergence rate of the Lagrange interpolant of
f # C & 4tBV for 4t=(kt)�

k=1. From this result we get the following
corollary [20, Sect. 5.2 and 5.3, p. 83]: Let &1<:<1�2 and &1<;<1�2.
In addition, suppose 4t=(kt)�

k=1 , where t # [0, 1]. Then the inclusion

C & 4t BV/U

holds if t<1�2&q when q>&1�2, and if t=1 when q=&1�2, where q is
defined by (5). X. Sun also mentioned that his result includes the result of
Kel'zon (4).
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Theorem 4. Let f # C. If the condition

|
M( f )

m( f )
|

N( f, y)&1

0
(t+1)q&1�2 dt dy<� (10)

holds, then f # U.

Condition (10) is definitive in the following sense.

Theorem 5. Let N( y) be a positive strictly decreasing continuous func-
tion on (0, 1). If

|
1

0
|

N( y)&1

0
(t+1)q&1�2 dt dy=�, (11)

then there exists f0 # C such that N( y, f0)�2N( y) and f0 /3 U.

PRELIMINARIES AND LEMMAS

Below we present some basic formulas and lemmas which are necessary
in what follows:

P (:, ;)
n (x)=(&1)n P (;, :)

n (&x), (12)

P (:, ;)
n (1)=\n+:

n +tn:, (13)

|Pn$
(:, ;)(xk, n)|tk&:&3�2n:+2 (xk, n # [0, 1]), (14)

arc cos xk, ntn&1(k?+O(1)) (k=1, ..., n); (15)

here :>&1, ;>&1, and n # N. (Regarding (12), (14), and (15) see [19,
formula (4.1.3), p. 59 and Thm. 8.9.1, p. 238]).

Lemma 1 [9, p. 22]. Let :>&1, ;>&1, x # [&1, 1], and n # N. If m
is an integer such that xm+1, n<x�xm, n (if x>x1, n or x<xn, n , set m=0
or m=n, respectively), then

} :
k

i=1

li, n(x)}�|lk, n(x)| (k=1, ..., m),

(16)

} :
n

i=k

li, n(x)}�|lk, n(x)| (k=m+1, ..., n).
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Lemma 2 [20, Lemma 3.1, p. 77; Lemma 3.2, p. 78]. Let xm n, n be the
zero of P (:, ;)

n (x) which is closest to x # [&1, 1]. Then we have

lk, n(x)=O( |k&m| q&1�2) (k{m), (17)

lm, n(x)=O(1), (18)

x&xk, n=O \ |k&m| (1&x2)1�2

n
+

|k&m| 2

n2 + (k{m), (19)

x&xm, n=O(1�n), (20)

uniformly for x # [&1, 1], where k=1, 2, ..., n, n # N, m=mn , and q is
defined by (5).

Lemma 3 [16, Thm. 3, p. 114]. Let 4BV and 1BV be Waterman's
classes defined by sequences 4=(*k)�

k=1 and 1=(#k)�
k=1 , respectively. Then

the inclusion 4BV/1BV holds if and only if

sup
n # N \ :

n

k=1

1�#k+\ :
n

k=1

1�*k+
&1

<�.

Definition 5 [25]. Let 4e=(*k+e)
�
k=1 , e # N, where the sequence

4=(*k)�
k=1 satisfies the conditions of Definition 4. A function f # 4BV is

said to be continuous in 4-variation, i.e., f # 4CBV, if v4e( f )=o(1).

Lemma 4 [17, Thm. 1, p. 88]. Let a sequence 4=(*k)�
k=1, satisfying

the conditions of Definition 4, be such that limk � � *k�*2k exists. Then
4BV=4C BV if and only if this limit is less then one.

Lemma 5 [18, Thm. 2.5, pp. 429, 430]. The sets C & V8 , C & V[v],
and C & 4BV form Banach spaces with norms

& f &8=inf[r>0: v8( f�r)�1]+| f (1)|, (21)

& f &v=sup
n # N

v(n, f )
v(n)

+| f (1)|, (22)

and

& f &4=v4( f )+| f (1)|, (23)

respectively.

(Regarding (21) and (23) see, also, [11, p. 32] and [24, p. 108]).
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Definition 6 (cf. [28, p. 16]). We say that a function 8 has the
complementary function 9 in the sense of W. H. Young, if

8(x)=|
x

0
,(t) dt and 9(x)=|

x

0
�(t) dt,

where , is a strictly increasing continuous function on [0, �), ,(0)=0,
and �(x)=,&1(x) for x # [0, �).

PROOFS

Proof of Theorem 1. Sufficiency. In view of Lemma 3 it is enough to
show that C & 4qBV/U, where

4q=(k1�2&q)�
k=1 , (24)

and q is defined by (5).
Suppose f # C & 4qBV, x # [&1, 1] is arbitrary, and m=mn is an integer

defined in Lemma 2. Now set

f (x)&Ln(x, f )= :
m

k=1

( f (xk, n)& f (x)) lk, n(x)

+ :
n

k=m+1

( f (xk, n)&f (x)) lk, n(x)#I1+I2 .

By Abel's transformation we have

I1=( f (xm, n)&f (x)) :
m

i=1

li, n(x)+ :
m&1

k=1

( f (xk, n)&f (xk+1, n)) :
k

i=1

li, n(x).

Consequently, applying (1), (16)�(18), and (20), we obtain

|I1 |<K \|(1�n, f )+ :
m&1

k=1

| f (xk, n)& f (xk+1, n)|
(m&k)1�2&q + .

Let us arrange the numbers f (Ik, n)=| f (xk, n)& f (xk+1, n)| in decreasing
order: f (In k, n)�f (In k+1, n), k=1, ..., n&1. Then we have

|I1 |<K \|(1�n, f )+ :
m&1

k=1

f (Ink , n)
k1�2&q + .
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In view of the similarity between the estimations of I1 and I2 we omit the
details of the estimation of I2 . Finally, we obtain

| f (x)&Ln(x, f )|<K \|(1�n, f )+ :
n&1

k=1

f (Ink , n)
k1�2&q + .

Without loss of generality we can assume that f{const. Now set
e=[|(1�n, f )&1], where [a] means the integer part of a number a.
According to (15) we have xk, n&xk+1, n=O(1�n) (k=1, ..., n&1), and so,
for n>N0 (here and elsewhere N0 denotes a sufficiently large positive
integer), by (1) we get

| f (x)&Ln(x, f )|<K \|(1�n, f ) :
e

k=1

1
k1�2&q+ :

n&1

k=e+1

f (Ink, n)
k1�2&q +#J1+J2 .

(25)

It is clear that since q<1�2, we have J1=o(1). Taking into account that
the intervals (xk, n , xk+1, n), k=1, ..., n&1, are non-overlapping, we can
estimate J2 as follows:

J2= :
n&1

k=e+1

f (Ink , n)
k1�2&q = :

n&e&1

k=1

f (Ink+e , n)
(k+e)1�2&q

< :
n&e&1

k=1

f (Ink , n)
(k+e)1�2&q�v4 e

q ( f ). (26)

Obviously the sequence 4q satisfies the conditions of Lemma 4, so
f # 4qBV=4q

C BV, and by Definition 5, J2<v4qe( f )=o(1), independent of
x # [&1, 1]. Thus, combining (25) and (26), we have f # U.

Necessity. We always assume that :�; since the case :<; reduces to
the previous one via identity (12). Now let q>&1�2, where q is defined by
(5). If condition (6) is not fulfilled, then by virtue of Lemma 3 (see [16,
Proof of Thm. 3, p. 116] there exists a decreasing sequence of positive
numbers (ak)�

k=1 , ak � 0, as k � �, such that

:
�

k=1

ak

*k
<� (27)

and

:
�

k=1

ak

k1�2&q=�. (28)
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Let us consider a sequence of linear functionals Ln( f )=Ln(1, f ) (n # N)
defined on a Banach space C & 4BV with norm (23). We shall show that
a sequence of norms of the functionals (&Ln&)�

n=1 is not bounded. Then an
existence of f0 # C & 4BV such that f0 /3 U immediately follows from
Banach-Steinhaus Theorem. For this purpose let us define functions

(&1)k+1 ak for x=x(k, n), k=1, ..., [n�2],

fn(x)={0 for x=&1, 1, and x([n�2]+1, n), (29)

linear for the rest x # [&1, 1],

where n>N0 .
It follows from (27) and (29) that fn # C and & fn&4<K (n>N0).

Meanwhile, combining (13), (14), (19), and taking into account that the
sign(P$n(xk, n))=(&1)k+1 (k=1, ..., n) [12, p. 71], we get

Ln( fn)= :
n

k=1

fn(xk, n) Pn(1)
P$n(xk, n)(1&xk, n)

>K :
[n�2]

k=2

(&1)k+1 aknq

(&1)k+1 k&q&3�2nq+2(k&1)2 n&2>K :
[n�2]

k=2

ak

k1�2&q . (30)

Then by (28) and (30) &Ln &�|Ln( fn)|�&fn&4 � � as n � �, and the
assertion of Theorem 1 for q> &1�2 is proved.

To complete the proof for the case &1<q�&1�2 it is sufficient to
mention that by the asymptotic formula [19, Thm. 8.21.13, p. 197],
P(:, ;)

n (0)>Kn&1�2 on an infinite subsequence of positive integers n. Then
consider Ln(0, gn), where

gn(x)={
(&1)k+1 a[n�2]+1&k

0

linear

for x=x(k, n), k=[n�4], ..., [n�2],
for x=&1, 1, x([n�4]&1, n),
and x([n�2]+1, n),
for the rest x # [&1, 1],

(31)

where n>N0 . K

Proof of Theorem 2. Sufficiency. If v(n) satisfies (7), then V[v]/4qBV
[3, Thm. 2, p. 232] (just set *k=k1�2&q, k # N). We combine this with
Theorem 1 to obtain sufficiency of condition (7).

Necessity. Let us assume that condition (7) does not hold, i.e.,

:
�

k=1

v(k)
k3�2&q=�. (32)
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Applying Abel's transformation it is trivial to check that, when q<1�2,
(32) implies

:
�

k=1

v(k)&v(k&1)
k1�2&q =�. (33)

Again we apply an idea of unboundedness of a sequence of norms of the
linear functionals (Ln)�

n=1 defined on a Banach space C & V[v] with norm
(22). Following a construction of the counterexample of Theorem 1, for
q>&1�2 let us consider a sequence of functions (29), where ak=v(k)&
v(k&1), k # N.

Since fn # C and &fn &v<K for n # N, the rest of the proof follows from
(30) and (33). Analogously, for the case q=&1�2 we consider the sequence
Ln(0, gn), where the functions gn are defined by (31). K

Proof of Theorem 3. Sufficiency. It is known that conditions (8) and (9)
are equivalent (see [14, p. 620] and [1, Lemma 4, p. 271] for the cases
q=&1�2 and q>&1�2, respectively). At the same time, condition (8)
implies the following inclusion [24, Thm. 1, p. 112]: V8 /4qBV, where 4q

is defined by (24). The rest of the proof immediately follows from
Theorem 1.

Necessity. Let us assume that condition (8) does not hold, i.e.,

:
�

k=1

9(kq&1�2)=�. (34)

As it is obvious, we consider the same sequence of linear functionals Ln ,
but now on a Banach space C & V8 with norm (21). Again, assuming that
q>&1�2, where q is defined by (5), we consider the sequence of functions
defined by (29), where now ak=�(kq&1�2), k # N.

Since the functions fn are continuous by construction, let us estimate
&fn&8 . Obviously, by the convexity of 8, we have

v8( fn)= :
[n�2]&1

k=1

8(�(kq&1�2)&�((k+1)q&1�2))

< :
[n�2]&1

k=1

8(�(kq&1�2))&8(�(k+1)q&1�2)<8(�(1)),

and consequently & fn &8<K for n>N0 . To complete the proof it suffices to
estimate Ln( fn). From (30) we have

Ln( fn)>K :
[n�2]

k=1

�(kq&1�2)
k1�2&q . (35)
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But is known that condition (8) is also equivalent to the conditions

:
�

k=1

�(kq&1�2)
k1�2&q <� (36)

and

|
1

0
|

1�,(x)&1

0
(t+1)4q�(1&2q) dt dx<�. (37)

For q=&1�2 see [14, conditions (1), (2), (4), and (5), pp. 619�620].
Regarding the case q>&1�2, see [1, Lemma 4, conditions (26), (27), and
(32), pp. 271 and 274], setting l=1, :1=&q&1�2, and $=q+1�2.

So, (34) implies a divergence of series (36), and hence by (35), unbounded-
ness of Ln( fn). The rest of the proof follows from Banach�Steinhaus
Theorem. In case q=&1�2 likewise can be considered the functions gn

defined by (31) and the functionals Ln(0, } ). K

Proof of Theorem 4. Again we refer to known results. As it is shown
[2, Coro. 1 and Coro. 2, p. 55], if f # C, then condition (7) implies (10),
and the rest is an obvious consequence of Theorem 2. K

Proof of Theorem 5. Let us assume that q> &1�2, where q is defined
by (5). We shall follow the construction suggested in [14, Proof of Thm. 3,
p. 623]. Let ,( y)#N( y)q&1�2 for y>0, and ,(0)=0. We introduce the
following notations:

8(x)=|
x

0
,(t) dt, �(x)=,&1(x), and 9(x)=|

x

0
�(t) dt. (38)

Then, by virtue of equivalence of (36) and (37), from (11) we obtain

:
�

k=1

�(kq&1�2)
k1�2&q =�,

from which follows the existence of a sequence (mi)
�
i=1 of strictly increasing

positive integers such that

:
mi+1

k=m i+1

�(kq&1�2)
k1�2&q � � as i � �. (39)
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Now we shall construct a sequence of positive integers (ni)
�
i=1 and

a sequence of functions ( fi (x))�
i=1 as follows: let n1 be such that

x(2m2 , n1)>0, and let

ak for x=x(2k, n1), k=m1+1, ..., m2 ,

f1(x)={0 for x=&1, 1, and the rest nodes x(k, n1),

linear for the rest x # [&1, 1],

where ak=�(kq&1�2), k # N.
If the numbers n1 , n2 , ..., ni&1 and the functions f1 , f2 , ..., fi&1 have

already been constructed, then ni and fi are chosen as follows:

x(1, ni&1)<x(2mi+1+1, ni), (40)

|Ln i (Fi)|<1; (41)

here Fi (x)=�i&1
s=1 fs(x).

ak for x=x(2k, ni), k=mi+1, ..., mi+1 ,

fi (x)={0 for x=&1, 1, and for the rest nodes x(k, ni), (42)

linear for the rest x # [&1, 1].

Inequality (40) follows from (15), and (41) is possible by virtue of
Theorem 1 since Fi # V for every i # N.

Let f0(x)=��
i=1 fi (x). Since the supports of fi (i # N) are nonover-

lapping (see (40) and (42)) and ak � 0 as k � �, it follows from (42) that
f0 # C. Regarding N( y, f0), since 0�f0(x)��(1), let us assume that for
a given y # (0, �(1)], �((k+1)q&1�2)<y��(kq&1�2) for some k # N. Then
by (42)

N( y, f0)�2[(m2&m1)+(m3&m2)+ } } } +(k&mi)]�2k.

On the other hand (see (38))

(k+1)q&1�2<,( y)�kq&1�2,

i.e., N( y)=,( y)2�(2q&1)�k, and hence N( y, f0)�2N( y).
Now let us estimate Ln( f0). If F i (x)=��

s=i+1 fs(x), then

Ln i ( f0)=Lni (Fi)+Lni ( fi)+Ln i (F i)#11+12+13 . (43)

By (41) |11 |�1, and by (40) 13 #0. Regarding 12 (see (30) and (42)) we
have

|Ln i ( fi)|>K :
mi+1

k=m i+1

�(kq&1�2)
k1�2&q ,
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which combined with (39) and (43) implies Lni ( f0) � � as i � �, so
f0 /3 U. Again, for the case q=&1�2 we consider the sequence of
functionals Ln(0, } ) and an obvious modification of functions (31). Thus the
proof is completed. K
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