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Necessary and sufficient conditions are obtained for a continuous function
guaranteeing the uniform convergence on the whole interval [ —1, 1] of its
Lagrange interpolant based on the Jacobi nodes. The conditions are in terms of
A-variation, @-variation, the modulus of variation, and the Banach indicatrix of a
function. © 1996 Academic Press, Inc.

INTRODUCTION

1. Throughout this paper we use the following notations: N and Z , are
the sets of positive and nonnegative integers, respectively. M is the space of
bounded functions on [ — 1, 1] and C is the space of continuous functions
on [ —1, 1] with uniform norm ||-||.. By w(d, f) we denote the modulus
of continuity of fe Con [ —1, 1], ie,

(9, f)=max{|f(x+h)—f(x)|:x,x+he[ —1,1], |h| <5}. (1)

The function p is called a Jacobi weight if p(x)=(1—x)*(1+x)%,
a> —1, and B> —1. If p is a Jacobi weight, then by a(p)= (P (x))"_,

we denote the corresponding system of orthogonal polynomials P*#)(x) =
vu(a, B) X" + lower degree terms, y,(a, f)>0, ie.,

1
J P>P(x) P*P(x) p(x)dx=9,,, n#m.
—1

We assume that they are normalized by the condition P'*#(1)=("1"),
ne N. The system o(p) is defined uniquely and is called the Jacobi system
of polynomials.

179

0021-9045/96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



180 GEORGE KVERNADZE

By x(k, n)=x; ,=x/, k=1, .., n, we denote the zeros of a polynomial
P,(x)=P"(x) arranged in decreasing order. It is known [ 19, Thm. 3.3.1,
p. 447 that all zeros of P,(x) are real and distinct and belong to (—1, 1).

For a given Jacobi weight p and a given function fe M, the corresponding

Lagrange interpolating polynomial is denoted by L!*#(f). Hence,
LD P f) = D)
for k=1, 2, .., n, and we can write

n

L(x, f)=LP(x, f)= 3 flx=!) 15D(x), (2)

k=1
where the fundamental polynomials /i are defined by
L o X) = 10D () = PP () J(P P (e ) (x — x i),

By U= U"™" we denote the class of functions, defined on the interval
[ —1, 1], for which the sequence of Lagrange interpolating polynomials for
indices a and f is uniformly convergent on the whole segment [ —1, 1], i.e.,

tim [|L; (-, f) = fl «=0.

n— oo

By K we denote positive constants, possibly depending on indices o and
f, and in general distinct in different formulas. For positive quantities 4,
and B,, probably depending on some other variables as well, we write
A,=o(B,) and 4,=O(B,), if lim,,_, , 4,/B,=0 and sup,, .y A4,/B, < ©,
respectively. For quantities 4 and B, depending on some variables, we
write A ~ B if the ratio A/B is between two positive constants, independent
of the variables.

The following notions are some generalizations of the notion of bounded
variation of a function.

DerFmNITION 1 [4]. Let fe C. Then the Banach indicatrix N(y, f) of f'is
defined as follows: for every ye(— oo, o0), N(y, f) is equal to the number
(finite or infinite) of solutions of equations f(x) = y.

Banach [4, Thm. 2, p. 228] proved that a continuous function f has
a bounded variation if and only if N(y, f) is integrable on (m(f),
M(f)), where m(f)=min{f(x): xe[ —1,1]} and M(f)=max{f(x):xe€
[—1, 17}
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DEerFINITION 2 [27]. Let @ be a strictly increasing continuous function
on [0, o) and @(0) =0. A function f'is said to have @-bounded variation
on[—1,1],1e, fe Vg, if

vol ) =sup 3 (1S (x0) — flxe 1)) < .

F
where IT={ —1<x,<x,< --- <x,<1} isan arbitrary partition of [ — 1, 1].

If &(x)=x, then V, coincides with the Jordan class V' of functions of
bounded variation and when @(x)=x?, p > 1, it coincides with the Wiener
[26] class V.

DerFINITION 3 [6]. Let fe M. The modulus of variation of the function
fis called the function v(n, f) defined for neZ_ as follows: v(0, f)=0,
while for n>1

n—1

v(n, f)=sup Z [/ (k4 1) = (x5

I, k=0

where I, is an arbitrary system of n disjoint subintervals (X,., Xk 1),
k=0,1,..,n—1, of the interval [ —1, 1].

If v(n), ne N, is a nondecreasing upwards convex function and v(0) =0,
then we call v(n) the modulus of variation.

The class of functions which satisfy the relation v(n, f)= O(v(n)) will be
denoted by Vv].

In particular, V[1]=V.
DerFINITION 4 [24]. Let A= (/4;,){_, be a nondecreasing sequence of

positive numbers such that > 7, 1/, =o00. A function f is said to have
A-bounded variation on [ —1, 1], i.e., fe ABV, if

< o0,

v4(f)=sup i |/ (X 1) — foxa0)

7 =1 /1/(
where 7 is an arbitrary system of disjoint intervals (x,;, X5, ) <[ —1, 1].
If 2, =1, ke N, then obviously ABV=1V.

2. It is well known (cf. [21, Section 8.1.2, p. 469]) that continuity of
a function on [ —1,1] alone is not sufficient to imply the uniform
convergence of its Lagrange interpolant based on the Jacobi nodes (or at
any other nodes either).
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In the present paper we examine those conditions on the variation of a
continuous function which guarantee its Lagrange interpolant’s uniform
convergence, and whether these conditions are definitive.

Here we represent a brief review of the question. As a corollary from his
more general theorem, Berman [ 5, Thm. 4, p. 12] obtained the following
result: Let —1<a<0 and —1<f<0. Then Lagrange interpolant (2)
tends to f(x) for every x e (—1, 1) whenever fe Cn V. For the special case
oa=pf = —1/2 this result belongs to Krylov [10, Thm. 2, p. 364]. Later,
Geronimus [7, Thm. 10, p. 557] in particular proved that the above
mentioned result of Berman is valid for x> —1 and f> —1, and for every
xe(—=11).

Kel'zon [8] showed that the pointwise convergence of Lagrange inter-
polant (2) to the function f being interpolated is guaranteed for feV,,
p=l,if —l<a<l/p—1/2 and —1<f<1/p—1/2. Nevai [13, Thm. 7,
p. 126] studied conditions of Lagrange interpolation uniform convergence
on [a,b]=(—1,1) for a function fe CnV, for arbitrary a«> —1 and
S > —1. Pilipchuk [15, Thm. 1, p. 40] continued this investigation of the
problem. He obtained a condition in terms of the modulus of variation
of a function fe C guaranteeing its Lagrange interpolant’s uniform
convergence strictly inside [ —1, 1].

Regarding uniform convergence conditions on the whole interval [ —1, 1],
the first result was obtained by Vértesi [22, Thm. 3.1, p. 24]: If —1<
a<1/2 and —1 < f < 1/2, then the following inclusion holds:

CnVcU. (3)

He also showed [ 23, Thm. 3.2, p. 421] that if max(a, ) = 1/2, then conclusion
(3) does not hold.

Kel'zon [9, Thm. p. 21] generalized the result mentioned above for V,
classes of functions: If —1<a<1/p—1/2 and —1<f<1/p—1/2, then the
following inclusion holds:

CnV,cU. (4)

X. Sun estimated the convergence rate of the Lagrange interpolant of
feCnA,BV for A,=(k")7_,. From this result we get the following
corollary [ 20, Sect. 5.2 and 5.3, p. 83]: Let —1<a<1/2and —1<f<1/2.
In addition, suppose 4,=(k")_,, where t€[0, 1]. Then the inclusion

CAABVcU

holds if < 1/2 — ¢ when ¢> —1/2, and if r=1 when ¢ = —1/2, where ¢ is
defined by (5). X. Sun also mentioned that his result includes the result of
Kel’zon (4).
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THEOREM 4. Let fe C. If the condition

M(f) oN(fiy)—1
f j (14 1)1 2 dr dy < o0 (10)
m(f) Y0

holds, then fe U.

Condition (10) is definitive in the following sense.

THEOREM 5. Let N(y) be a positive strictly decreasing continuous func-
tion on (0, 1). If

1L ~N(y)—1
[ s+ Pady=c, (11)
0 Y0

then there exists f, € C such that N(y, f,) <2N(y) and f, ¢ U.

PRELIMINARIES AND LEMMAS

Below we present some basic formulas and lemmas which are necessary
in what follows:

Pr(x)=(=1)" Pl —x), (12)
Pilaq/f>(1):<n+a>~n°‘, (13)

n
|P;,(%ﬁ)(xk,n)| ~ T3 2t 2 (xr.,€[0,17), (14)
arc cos x;_,~n"'(kn+ O(1)) (k=1, .., n); (15)

here « > —1, f> —1, and ne N. (Regarding (12), (14), and (15) see [ 19,
formula (4.1.3), p. 59 and Thm. 8.9.1, p. 238]).

LemmA 1 [9, p.22]. Leta>—1,>—1,xe[—1,1], andneN. If m
is an integer such that x,,,, ,<x<x,, , (if x>x, ,or x<x, ,, set m=0
or m=n, respectively), then

A

/

|llc, n(x)| (k = 1» oo m)a

—

™M= T~
o~
S
R

Il
>

(16)
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Lemma 2 [20, Lemma 3.1, p. 77; Lemma 3.2, p. 78]. Let x,,, , be the
zero of PP (x) which is closest to xe [ — 1, 1]. Then we have

li, (X) = Ol —m| 7~ 12) (k#m), (17)

L, n(x) = O(1), (18)

Je— 1— 2\1/2 ke — 2
x—xk,n=o<| m (=) 7 Je—ml > (k #m), (19)
n n
X=X, n=0(1/n), (20)

uniformly for xe[ —1,1], where k=1,2,..,n, ne N, m=m,,, and q is
defined by (5).

LemMma 3 [16, Thm. 3, p. 114]. Let ABV and I'BV be Waterman’s

classes defined by sequences A= (A;)_, and I'=(y,)_,, respectively. Then
the inclusion ABV < I'BV holds if and only if

n n —1
sup< Y 1/yk>< > 1/)Vk> < 0.
neN \k=1 k=1

DerFINITION 5 [25]. Let A,=(A,,..)¢_,, e€N, where the sequence
A= (A);_, satisfies the conditions of Definition 4. A function fe ABV is
said to be continuous in A-variation, i.e., fe A-BV, if v, (f)=o0(1).

LemmA 4 [17, Thm. 1, p. 88]. Let a sequence A= (A,){_,, satisfying
the conditions of Definition 4, be such that limy _, , A, /A exists. Then
ABV =A BV if and only if this limit is less then one.

LEmMma 5 [18, Thm. 2.5, pp. 429, 430]. The sets CnVy4, CnV[v],
and C n ABV form Banach spaces with norms

Il =inf{r>0: vgl ) < 1} + 1), e1)
111 =sup 2L ), (22)
and
L= oA+ LA, (23)
respectively.

(Regarding (21) and (23) see, also, [ 11, p. 32] and [24, p. 108]).
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DerFINITION 6 (cf. [28, p. 16]). We say that a function @ has the
complementary function ¥ in the sense of W. H. Young, if

where ¢ is a strictly increasing continuous function on [0, o), ¢(0)=0,
and Y(x)=¢ '(x) for xe[0, o).

PROOFS

Proof of Theorem 1. Sufficiency. In view of Lemma 3 it is enough to
show that Cn AYBV < U, where

AT = (K", (24)

and ¢ is defined by (5).
Suppose fe Cn ABV, xe[ — 1, 1] is arbitrary, and m =m,, is an integer
defined in Lemma 2. Now set

m

f(x)_Ln(x’f): Z (f(xk,n)_f(x)) lk,n(x)

k=1

+ Z (f(xk,n) —f(x)) lk, AX)=L A+,

k=m+1
By Abel’s transformation we have
- k
Ilz(f(xm,n) _f(x)) Z Z xkn _f(xk+1,n)) Z li,n(x)‘

i=1

Consequently, applying (1), (16)-(18), and (20), we obtain

_1|fx/\n f(x/\'+l,n)|>.

i<k (o(1n )+ 'y F =T

k=1

Let us arrange the numbers f(1; ,) =|f(x ,) — f(Xx .1 ,)| in decreasing
order: f(1,, ,)=fU,, ., ), k=1,..,n—1. Then we have

m—1

|Il|<K<a)(1/n Z lil/n; ’;>
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In view of the similarity between the estimations of 7, and 7, we omit the
details of the estimation of /,. Finally, we obtain

n—1

|f(x)_Ln(x’ f)|<K< l/l’l Z kl/nZ/\ ;:1)>

Without loss of generality we can assume that f#const. Now set
e=[w(l/n, f)~'], where [a] means the integer part of a number a.
According to (15) we have x; ,—x; ., ,=0(1/n) (k=1,..,n—1), and so,
for n> N, (here and elsewhere N, denotes a sufficiently large positive
integer), by (1) we get

e 1 n—1 I
| f(x)—L,(x, f)|<K<a)(1/n,f) y s Dt Y k(l/;k,nq)>zjl+.fz.

k=e+1

(25)

It is clear that since ¢ < 1/2, we have J, = o(1). Taking into account that
the intervals (x; ,, Xz, ,), k=1,..,n—1, are non-overlapping, we can
estimate J, as follows:

n—1 n—e—1
Ly n) S on)
ne 3 8

k=e+1

S (L]

(). (26)

k=1

Obviously the sequence ¢ satisfies the conditions of Lemma 4, so
feABV =A%LBV, and by Definition 5, J, <v 4 (f)=o0(1), independent of
xe[ —1,1]. Thus, combining (25) and (26), we have fe U.

Necessity. We always assume that o > f since the case o < ff reduces to
the previous one via identity (12). Now let ¢ > — 1/2, where ¢ is defined by
(5). If condition (6) is not fulfilled, then by virtue of Lemma 3 (see [ 16,
Proof of Thm. 3, p. 116] there exists a decreasing sequence of positive
numbers (a;);_,, a, =0, as k — oo, such that

y Z<oo (27)

and

L g (28)
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Let us consider a sequence of linear functionals L,(f)=L,(1, ) (neN)
defined on a Banach space Cn ABV with norm (23). We shall show that
a sequence of norms of the functionals (||L,|);"_, is not bounded. Then an
existence of f, e CnABV such that f, ¢ U immediately follows from
Banach-Steinhaus Theorem. For this purpose let us define functions

(=Df*tq,  for x=x(k,n),k - [7/2],
fu(x)=<0 for x=-1,1,and x([n/2] +1,n), (29)
linear fortherest xe[—1,1]7,

where n> N,.

It follows from (27) and (29) that f,eC and |f,|, <K (n>N,).
Meanwhile, combining (13), (14), (19), and taking into account that the
sign(Pi(x, ) =(—1) "' (k=1,..,n) [12, p. 71], we get

5 SalXk ) Pa(l)
k§1 P(xi (1 =X )

[n/2] (—1)+Lant 2l g
>Kk§2(_l)k+lk7q73/2nq+2(k_I)Zn >K Z kl/Z q° (30)

k=2

L,(f.)=

Then by (28) and (30) | L, || =I|L,.(f)I/If.ll4 — c© as n— oo, and the
assertion of Theorem 1 for ¢ > —1/2 is proved.

To complete the proof for the case —1<¢g< —1/2 it is sufficient to
mention that by the asymptotic formula [19, Thm. 8.21.13, p. 197],
P#(0)> Kn~'? on an infinite subsequence of positive integers n. Then
consider L,(0, g,), where

(_1)k+l Arppl+1—k for x=ux(k,n), k=[n/4], .. [n/2],

(x) = 0 for x=-—1,1,x([n/4]—1,n), (31)
En )= and  x([72] +1,n),
linear for therest xe[—1,1],

where n> N,. ||

Proof of Theorem 2. Sufficiency. If v(n) satisfies (7), then V[v] = ABV
[3, Thm. 2, p. 232] (just set 1, =k"?79 ke N). We combine this with
Theorem 1 to obtain sufficiency of COIldlthIl (7).

Necessity. Let us assume that condition (7) does not hold, i.e.,

2 ok
Y kingq:oo. (32)
k=1
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Applying Abel’s transformation it is trivial to check that, when ¢ <1/2,
(32) implies

i wk) —vlk—1) (33)

k1/27q

Again we apply an idea of unboundedness of a sequence of norms of the
linear functionals (L,);” , defined on a Banach space Cn V[v] with norm
(22). Following a construction of the counterexample of Theorem 1, for
g> —1/2 let us consider a sequence of functions (29), where a, = v(k) —
v(k—1), keN.

Since f,, e C and |f, |, <K for ne N, the rest of the proof follows from
(30) and (33). Analogously, for the case ¢ = —1/2 we consider the sequence
L,(0, g,), where the functions g, are defined by (31). ||

Proof of Theorem 3. Sulfficiency. It is known that conditions (8) and (9)
are equivalent (see [14, p. 620] and [1, Lemma 4, p. 271] for the cases
g=—1/2 and ¢g> —1/2, respectively). At the same time, condition (8)
implies the following inclusion [24, Thm. 1, p. 112]: V', < ABV, where A4
is defined by (24). The rest of the proof immediately follows from
Theorem 1.

Necessity. Let us assume that condition (8) does not hold, i.e.,

3 (k1= 12) = o0, (34)

k=1

As it is obvious, we consider the same sequence of linear functionals L,,,
but now on a Banach space Cn V', with norm (21). Again, assuming that
qg> —1/2, where ¢ is defined by (5), we consider the sequence of functions
defined by (29), where now a, =y(k?~'?), ke N.

Since the functions f, are continuous by construction, let us estimate
If.: |l &. Obviously, by the convexity of @, we have

[n/2]—1

valf) = Y Pk —y((k+1)7712)

[n/2]—1

< Y Ok ) = DYk + 1)1 1) <D(Y(1)),

and consequently | £, || o < K for n> N,. To complete the proof it suffices to
estimate L,(f,). From (30) we have

i [n/2] lp(kqfl/Z)
L,(f)>K ) A=

k=1

(35)
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But is known that condition (8) is also equivalent to the conditions

E’S) (kq—l/Z)
y 7‘6{1/2% <o (36)
k=1
and
1 pl/p(x)—1
fj (14 1)1 =20 g7 dx < . (37)
0 Y0

For ¢= —1/2 see [14, conditions (1), (2), (4), and (5), pp. 619-620].
Regarding the case ¢ > —1/2, see [ 1, Lemma 4, conditions (26), (27), and
(32), pp. 271 and 2747, setting /=1, a; = —g—1/2, and d=¢g + 1/2.

So, (34) implies a divergence of series (36), and hence by (35), unbounded-
ness of L,(f,). The rest of the proof follows from Banach-Steinhaus
Theorem. In case ¢ = —1/2 likewise can be considered the functions g,
defined by (31) and the functionals L,(0,-). ||

Proof of Theorem 4. Again we refer to known results. As it is shown
[2, Coro. 1 and Coro. 2, p. 557, if fe C, then condition (7) implies (10),
and the rest is an obvious consequence of Theorem 2. |1

Proof of Theorem 5. Let us assume that ¢ > — 1/2, where ¢ is defined
by (5). We shall follow the construction suggested in [ 14, Proof of Thm. 3,
p. 623]. Let ¢(y)=N(p)? "? for y>0, and ¢(0)=0. We introduce the
following notations:

D(x) = j:¢(t>d,, W(x)=¢ x), and  P(x)= j:wz)dr. (38)

Then, by virtue of equivalence of (36) and (37), from (11) we obtain

&Yk )
L pE =

k=1

from which follows the existence of a sequence (m1;);~ , of strictly increasing
positive integers such that

miq1 l//(kqf 1/2)

AR as i— oo. (39)

k=m;+1
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Now we shall construct a sequence of positive integers (n,);~, and
a sequence of functions (f;(x));2, as follows: let n; be such that
x(2m,, n;) >0, and let

ay for x=x(2k,n,), k=m,+1, .., m,,
fi(x)=<0 for x= —1, 1, and the rest nodes x(k, n,),
linear fortherest xe[—1,1],
where a, =y(k?~1?), ke N.

If the numbers n,,n,,..,n;_, and the functions f,, f>, .., f;_, have
already been constructed, then n; and f; are chosen as follows:

x(lzn[71)<x(2mi+l+15ni)s (40)
|L,(F)l<1; (41)

here F;(x) =312} f(x).
ay for x=x(2k,n,),k=m,+1,..,m; .,
fi(x)=<0 for x= —1,1, and for the rest nodes x(k, n;), (42)
linear fortherest xe[—1,1].

Inequality (40) follows from (15), and (41) is possible by virtue of
Theorem 1 since F; € V for every ie N.

Let fo(x)=>7, fi;(x). Since the supports of f; (ie N) are nonover-
lapping (see (40) and (42)) and @, — 0 as k — oo, it follows from (42) that
fo € C. Regarding N(y, f,), since 0<fy(x)<y(1), let us assume that for
a given ye (0, y(1)], y((k+1)7"12) <y <y(k? ') for some ke N. Then
by (42)

N(y, fo) <2[(my—my) + (mz—my) + -+ +(k—m;)] <2k.
On the other hand (see (38))
(k+1)7" 12 <g(y) <k~ '7?

ie, N(y)=¢(y)** Y >k, and hence N(y, f,) <2N(p).
Now let us estimate L, (fp). If F/(x)=X7_,,, f(x), then

L, (fo)=L,(F)+L,(f)+ L, (F)=T'1+I,+TI5. (43)

By (41) |I',| <1, and by (40) I'; =0. Regarding I, (see (30) and (42)) we
have
miy| lp(kqflﬂ)
L (N>K Y = o

k=m;+1
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which combined with (39) and (43) implies L, (f,) = o as i— o, so
fo ¢ U. Again, for the case g= —1/2 we consider the sequence of
functionals L,(0, -) and an obvious modification of functions (31). Thus the
proof is completed. ||
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